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Introduction

The Mars Global Surveyor and the Mars Pathfinder spacccraft;é‘/a,ro scheduled to be launched y
by the end of 1996. I'urther exploration of Mars with low-cost missions will probably continue
over the next decade or two, taking advantage of launch opportunities available every two years.
in this context, two or more satellites are likely to be simultaneously orbiting Mars during some
overlapping period of their lifetime. In Reference 1, it has been shown by detailed covariance
analysis (of a few cases) that satellite-to-satellite (STS)Doppler data is very useful in the accurate
determination of the Martian gravity field. In this paper, anapproximate analysis will be presented
on the improvement to be obtained in the high-frequency or short wavelength Martian gravity field
with STS Doppler data, avoiding costly, time-consuming and computation-intensive covariance
analysis. With the present emphasis on on-board and autonomous navigation,STS Doppler data
may become a reality in the not so distant future,

Satellite-to-satellite Doppler data can be obtained in two different configurations of the two
spacecrafts’ involved. (In this abstract, sometimes Satellite-to-satellite Doppler data will simply be *
designated as ST'S data, for convenience. ) A Communications-Relay cum Navigation Satellite may
be deployed in a high orbit (of radius possibly 1.5,000-30,000 km)about Mars and the other ina
low orbit at an altitude of about 180 km. This case will be referred to as the high-low satellite
configuration. Otherwise, two spacecraft; in low orbits such as for high-resolution imaging purposes .
or atmospheric studies, may be considered for STS data Thelatter will be designated as the low-
low satellite configuration, Both these cases are examined in the analysis below and the detailed
results will be presented in the paper.

Some Preliminaries

The analysis is based on Hill’s variational equations for circular orbits. The perturbations are
considered to be derived from gravitational harmonics only. In particular, the probelm is solved
using two-dimensional Fourier transforms in Cartesian coordinates (for the upper half-space)
for the conservative gravitational field. Due to the assumptions made in the analysis, the results
must be considered appropriate for high-frequency or short wavelength harmonics only.

The SI'S data consists of the relative velocity between the two satellites under consideration.
For satellites in the high-low configuration, the satellite in high orbit is essentially unaffected by
the higher degree and order gravitational harmonics except the fundamental, spherically symmetric
field. Hence tile relative velocity between the spacecraft can be attributed to the high frequency
gravitational field only. In the low-low configuration, for two satellites in the same low circular
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orbit, but separated by a finite distance (separated in true anomaly) betweenthem, the relative
velocity is obtained from the change in the non-spherical gravitational field duetothe difference
betweenthe spacecraft positions.

s

The relative velocit y between the two spacecraft s‘" is derived inthe (Fourier) transform do- +
main in terms of the high-frequency (or non-spherical part of the) gravitationalfield by solving
Hill’s equations. The perturbation forces in Hill’s equations are aso expressed in terms of the
two-dimensional Fourier transforms of the anomalous (or spherically asymmetric part of the) grav-
itational field for these purposes. With an optimal filterin the frequency domain, the improvement
in the spatial power spectral density of the gravity field is evaluated from the relative velocity
measurements or STS (Doppler) data, This procedure primarily completes the analysis.

Just the results from the crucial steps of the analysis are presented in this abstract for both
the high-low and low-low satellite configurations, along with a short note on the fina results. All
the details will beincludedin the paper.

Analysis

Hill’s equations®for the perturbations of a spacecraft nominally in a circular orbit are given

by
£ — 2n7) — 3n%¢ = Je (1)
i+ 2né = f, (2)
(+nPC=f, (3)

where (£,7,() are the perturbations in the spacecraft positioninthe radial, down-track and cross-
track directions respectively. £and ¢ denote the velocity and acccler ation in the radial direction
and similarly (1,7) and (¢,¢)in the down-track and cross-track directions. » denotes the mean
motion of the spacecraft in its nominal circular orbit an d (n =V /it), where V, and It arc the

nominal circular speed and orbital radius.

The most crucial assumption in the approximate analysis is that the planetary surface
shall be considered ‘{flat”. in particular, let the Cartesian (z-y) plane denote the planetary
surface with the 2 axis parallel to the nomina down-track motion of thespacecraft and the y axis
parallel to the cross-track direction and pointing in the same manner.The z axis points “radialy
upward”, in the upper half-space.

With this nomenclature, it is readily seen that
€ = (de/dz) (dz/dt) =V, (d€ [ dx) (4)

and similarly, £ = V2(d?¢/dz?). In turn, the perturbation equations (1 -3 can be rewritten as in

Vo &' —2nVon' — 3n*¢ = f, (5)
Vo' +2nVol’ = §, (6)
Vi '+ 0= S, ( 7
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where (') and (“) denote the first and second derivatives with respect to x. The two-dimensional
Yourier transforms in (z, y)of equations 5 through 7 arc readily obtained:

~(W2 V3 + 3n®)E — 2V jw.i) = f (8)
2nVO jwa' g o (4)3 V(z) 77 = j’n (9)
—w?VE({4 nP = (10)

where the Fourier transform of any function G(z,y; 2) has been implicitly defined as in
G(wm’ wys 2) = / G(z,¥; 2) exp{—j(wer + wyy)} dz dy. (11)

The perturbation forces (f<, fy, f¢) and their transforms are derived from the scalar anomalous
gravitational potential G(z,y; z) and its transform, G(w,,wy;2).in particular, G(2,y; 2) satisfies
Laplaces’s equation, with prescribed values on the surface, z = O;

V2@ =0;G(x,y;0) = Gz, Y). (12)
It is casily derived® that
Gwe, wy; 2) = G(w) eI, (W= Wl + wl) (13)

where G*(w) and G(z,y, ; O) are Fourier transform pairs, Since the perturbation forces are obtained
from the (negative of the) gradient of the anomalous gravitational potential,

(Jer fny ) = —(0/0%,0/0y, 8/0x) G(z,y,; 2) (14)
(j:fa jn» fC) = ('wL _'ju’a" —'jwy)é(w)c—lwlz’ (]5)

Substituting (15) in equations (8) through (10), solutions for the perturbations in the spacecraft
position are obtained in the transform domain as follows:

£ = —{|w|/(W2V)} G(w) ™I (16)
i) = {jwe /(W2 VF)} Gw) eI (17)
{ = {iwy /(W V)} Gw) eIt (18)

where, the spacecraft nominal altitude, ‘z = h’, above the planetary surface has specifically
been entered in the equations and it has also been assumed that Rw, > 1.

Since the relative velocity in the down-track direction, v, =:(dn/dt)= Vo (dn/dz), its trans-
form is given by (from the definition in equation 11 and Iiqn. 17)
b =(we)Vo i) = =(1/Vo)G(w) e IM, (19)
Similarly, it is easily shown that
By = (Gwa)Vol = —(w, Jw,)(1/Vo)G(w) ¢ lth 0)
b, = (Jwa)Vol = (|w|/jws)(1/Vo)G(w)e™ 11k, 21)

(19), (20) and (21) arc the measurement equations of the Doppler data on the relative
velocity between two satellites in the high-low configuration.
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The relative velocity v, between 2 satellites separated by adistance A in the same low circular
orbit (low-low configuration) is given by?®

vy = va(x + AI2) - v(z - Al2)
d dn d*n
A v 20y v A —
>Ad:z{‘0dm ‘OAdm?
so that in the transform dom ain
by = —(2/V0)J sin(wA/2) G(w) e Wt (22)

In this paper, the gaussian-weighted average Of the pointwise or local surface gravity anomaly
is examined for evaluating the merits of determining the nigh-frequency gravity field with satellite-
to-satellite Doppler data. Let A(z, y) ancl A,,(z, y) denote the pointwise surface gravity anomaly
and its gaussian-weighted average; they are given by

Maz,y)=—(0/02)G(x,y;2)at 2 = O (23)
Aav(Z, y) = 27302 // Ap, q) exp{-—- 5-](;5 [(z — P2+ (v- ¢)%]} dpdq (24)

where o is the appropriately chosen®‘spread’ of the gaussian weighting kernel. It may be noted
that the ‘pointwise surface gravity anomaly’issimply the radia or z-directional acceleration f¢ on
the planetary surface (at z = O) as in Eqn. (14).

Let ;\av(:z_, y) be the “optimally estimated” gaussian-averaged pointwise surface gravity
anomaly and A,, denote the error as in

5‘a'u(wa y) = 5‘av(:vay) — Aav(2,¥) (25)

Then the merits of determining the high-frequency gravity field with data from satellites in the
“high-low” and “low-low” configuration will be evaluated by the minimum value(s) of the square-
error integral in the estimated surface gravity anomaly (gaussian-averaged) asin

2* = Min E{[Aeo(a, ¥))?} (26)
= //{j\au(x, Y) - Aau(z, y)}’ da dy (27)

By definition (ant] choice) the optimal estimator will yield the minimum square-error integral
in equations (26) and (27). In particular, it follows from Parseval’s theorem that

Y= (]/4#2)/ ||;\av||2dwg, dw, (28)

= (1/4x%) //{jxau(w) - Aao(@)}? dw, dw,. (29)

From now onwards, the ( ') above the argument as in A(w), denoting Fourier transform will be
dropped for convenience; the context will make it clear, when the discussion is in the frequency (w)
domain.

Furthermore, from equations (13), (15), (23) and (25), A(w) and A,,(w)can be obtained as in

Aw) = ol G(w) 30
As.(W) = |w|exp(-0’w?/2) G(w) (31)

= p(w) G(w) (32)

where p(w) = |w]exp(—-a’w?/2) (33)
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Let the genera] k-vector of measurements be denoted by
dw) =1 (w) G(W) 4 W (34)

d(w)isthe S1'S Doppler (observational) data. H (w) is tile transfer function between the observa-
tions and the anomalous gravitational field G(w),as in eguations (19)- (21) for two satellites in the
high-low configuration and as in (22) for low-low satellites. W is a k-vector of measurement (noise)
errors. et Aqy(w) beoptimally determined from

Aan(w) = T (w) d(w) = PT (W) [H(w) G(w) 4 W) (35)

where ¥ (w) is a k-vector optimal estimator and the superscript ()7, implies the transpose in
malrix algebra. From (32) and (35), it is readily seenthat

Aau(w) = {7 (W) H (W) = (W)} Gw) + 7 (W)W (36)
[ Xau(@)I? = {97 (—jw) H (= jw) = p(—jw)} Sa(w) {17 (iw) P(w) — p(iw)}
+ 7 (—jw) Pw(w) () (37)

E{IG(@)I*}- (38)

i

where @g(w)

Similarly, ®w(w) is the power spectral density of the measurement noise. Since the integrand in
(28) is positive semi-definite, the minimum value of theintegral for A*is attained, if the filter v (w)
is chosen so that the first variation & ||As(w)||* = O. From this condition, the optimal filter ¥ (w)
is derived as in

P(w) = {H(—jw) c(w) H (jw) + Pw(w)} ™ U (- jw) Pc(w) p(jw) (39)

with necessary assumptions on data noise and the gravitational potential so that all cross-correlations
vanish identically. In particular, for the optimal estimator, theninimum square-error integral
A* (the familiar ‘(cost function” ) is given by

A" = Min E{J}Aau( )II }
/ / cW)p(=gw)pldw) g, g, (40)
47r2 1+ <I>c(w B () @3} H (- jo)

Proceeding from Hill's equations, Doppler measurement of the relative velocity between two
satellites is shown related to the anomalous gravitational potential as in equations ( 19)t hrough
(22). Then a minimum cost criterion is stipulated as given in 15gs.(26) through (29) in terms of
the estimation error in the averaged pointwise surface gravity anomaly, squared and integrated over
the ‘planetary surface’. The optimal estimator is derived in (39) and the minimum vaue of the
square-error integral is obtained in (40) depending upon the data type (for the transfer function)
and the power spectral density of the data noise and of the surface gravity anomaly. This completes
the analysis.

Results and Conclusion

‘I'he denominator in EEqn. (40) for the square-error integral
={] + ®c(w) ! (j‘*’) q’w H(-jw)} (41)
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can be clearly interpreted as the ratio of the a priori to a posteriori variance and hence can be used
as a measure of the effectiveness of a given data type with transfer function 1/ (jw) and measurement
noise power spectral density ®w,which will be assumed constant in this paper.

Yor the high-low satellites, the transfer function has aready been derived to be
Hp(w) = —exp(—wh) (1/Vo) {1, (wy/wz), —j(w/ws)}. (42)

The vector transfer function is direction-dependent, or in other wordsit is not isotropic in the
(wy-wy) planc.

Yor two satellites in the low-low configuration, the tiansfer function is a scalar, given by
Hy(w) = —(27) exp(~wh) (IIVO) Sin (w,A/2) (43)

which is also not isotropic. in the (ws-wy) plane.

The reduction in the variance from the a priori given by (41) can be calculated for each
(spatial) frequency by transforming the integral in polar coordinates in the (w,-w,) plane. The
power spectral density of the non-spherical part of the Martian gravitational field for such purposes
was obtained from the 50th degree and order field available from Kon oplivé. Preliminar, results?
indicate that an improvement by a factor of 5 to 10 can be obtained in the gravity field (upto
the 30th degree and order) with data from two satellites in the high-low configuration. An even
greater reduction in the uncertainties in the anomalous gravitational ficld (by a factor of 20 to 50) is
indicated, with Doppler data from two satellites in the low-low configuration. All the assumptions
for the various cases and the details of the computations will be presented in the paper in full
detail.
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